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FOREWORD

This document is one of a series of candidates for inclusion in

a future revision of MSC-04217, "Space Shuttle Guidance, Navigation and

Control Design Equations". The enclosed has been prepared under

NAS9-10268, Task No. 15-A, 'kN&C Flight Equation Specification Support",

and applies to functions 1 and 2 of the Inertial Reference Module (OS4) as

defined in MSC-03690, Rev. B, "Space Shuttle Orbiter Guidance, Navi-

gation and Control Software Functional Requirements - Vertical Flight

Operations", dated 15 December 1971.

APOLLO Space Guidance Analysis Division
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NOMENCLATURE

Unit vector to star number one in reference coordinates.

Unit vector to star number two in reference coordinates.

Unit vector to star number one in present stable member

coordinates.

Unit vector to star number two in present stable member

coordinates.

Transformation matrix from reference coordinates to

desired stable member coordinates.

Unit vector to star number one in desired stable member

coordinates.

Unit vector to star number two in desired stable member

coordinates.

Unit vectors of the reference coordinate system.

Unit vectors of the present stable member.

Unit vectors of the desired stable member.

An orthogonal triad of unit vectors defined in terms of

ils and i_2 S

An orthogonal triad of unit vectors in terms of iDS and

2 2DS'

Gyro torquing angles

Projections of the desired stable member onto the

present stable member.

A unit vector -- in the plane defined byixs and iZS -

used in the final determination of the gyro torquing

angles.
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I.

1. INTRODUCTION ii- -

At various points in a Shuttle mission, the need arises to align the

Inertial Reference Unit (IRU). By sighting on two stars and making use of

the stored transformation from theoptics frame to the navigation base

frame, and the gimbal angle trans,formation from the navigation base to

the stable member, unit vectors to the target stars in the present stable

member coordinates are generated. Furthermore, as discussed in

Ref. 1, the coordinates of these2 ;., stars, in the reference coordinate

frame, are stored in the computeir. Also stored in the computer is the

transformation matrix from the reference frame to the desired stable

member coordinate system. From the above, unit vectors to the target

stars in the desired stable member frame are constructed. This infor-

mation, when combined with the preceding, is sufficient to express the

present stable member in terms of the desired stable member.

This document details how the gyro torquing angles required to go

from the present stable member to the desired stable member are

determined. The inputs are the transformation matrix from the reference

to the desired stable member coordinates and the unit vectors to the two

target stars in both the reference and present stable member coordinates.

The method of determining the gyro torquing angles is exactly that used

in project APOLLO (Ref. 2).

While the equations as derived are correct for arbitrarily large

torquing angles, the alignments under consideration are Fine Alignments

(i. e., torquing angles-l°).

1-1



·2. FUNCTIONILA FLOW DIAGRAM

; -:"The-:uncAti^i iflow diagram for the calculation of Fine Alignment

Gyro Torquing Angles is shown in Figure 1. The routine is entered after

optical sightings have been made on two stars and the sighting data is

considered acceptable on the basis of the star angle difference check.

Reference 1 details the steps preceding entry into this routine.

Upon derivation of the gyro torquing angles, the angles are checked

.·.--.. b.-asis of previous gyro drift rates. Reference 1 details the logic

which checks the reasonableness of the computed angles.

2.1
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ENTER

Optical sightings yield unit vectors - in

present stable member coordinates - to

two known stars (ilS, i2 ).

Extract from storage the coordinates of

the target stars in the reference coordinate

frame (ilR, i2R) .

Use matrix transformation defining desired

SM orientation to convert iR and i2R to

star vectors expressed in desired stable

member coordinates (ilDS' i2DS).

hs' 2~s AiDS and i2DS are used to express

desired stable member in terms of present

stable member.

Calculate gyro torquing angles.

Figure 1. Fine Alignment Gyro Torquing Angles
Functional Flow Diagram.
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3. INPUT AND OUTPUT VARIABLES

Input Variables

ils Unit vector of star number one in present stable member

coordinates.

i2S Unit vector of star number two in present stable member

coordinates.

Unit vector of star number one in the reference frame.

Unit vector of star number two in the reference frame.

MRDS Transformation matrix from reference to desired SM

coordinates.

Output Variables

Ox, Oy, 0z Gyro torquing angles required for fine alignment of the

IRU.

N
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4. DESCRIPTION OF EQUATIONS

4.1 Introduction

In this section the gyro torquing angles which allow for the fine

alignment of the stable member from its present orientation to a desired

orientation are described.

The present orientation of the stable member is determined

(implicity) by sighting on two known* stars. Upon being processed by the

computer, the mark data allows the positions of the stars to be expressed

in terms of the present stable member coordinates. The unit vectors to

the stars, in present stable member coordinates (jS i 2s) are given

explicitly as:

-ils = ixs + sly-iys + Slzizs -iS 51X-XS + 5 1Y-YS + lZfiZS (la)

and

2S = S2iXS S 2 Y + 2s2ZS 
+

(lb)

Unit vectors of the same two stars in reference coordinates are given

by ilR and i2R.

4. 2 Star vectors in terms of desired stable member coordinates

The desired orientation of the stable member is stored in the com-

puter. The unit vectors of the reference coordinate system are given by

iXR' iYR' and iZR: corresponding unit vectors in the desired stable member

are iXDS , iyDS' and iZDs. The two sets of unit vectors are related by the
relation

= MR_DS IY (2)

*Here "known', means that the unit vector of the star in the reference

coordinate system is stored in the computer.

4.1



where MR DS is the transformation matrix between the two coordinate

systems.

The unit vectors to the two stars are stored in the computer as

JlR = rliX + ry iy + rlzjz. (3 a)

iR = r2X2x + r2y Iy + r 2 z _Z (3b)

The same stellar unit vectors, expressed in terms of the desired

stable member coordinates, are given by

-hIDS = dlx-XD + dly -'YD + dlZ-iZD (4a)

-i2DS d 2 X-XD + d
2
y-lyD + d

2
zizD, (4b)

where

dlx rlXdl( = MRDS (Y ()a)

and

d 2 y M r2 (5b)R-DS2Y222Xi (5b)

d2z/

4. 3 Desired stable member in terms of present stable member

At this point we have the position vectors to two stars expressed

in terms of both the present stable member and the desired stable member.

It is now desired to express the desired stable member in terms

of the present stable member. To this end we define two ortho-normal

4 2
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coordinate systems; one in the present stable member coordinates and the

other in the desired stable member coordinates. The system defined in

terms of the present stable member is given by,

-XUD

-YUD

iZUD

(6 a)

unit (lS X 2S)

iXU X iXy

lDS

= unit (-lDS x i2DS)

XUD X iYUD

defines the system in terms of the desired stable member frame.

(6 b)

(6c)

(7a)

(7b)

(7c)

Explicitly,

.iXUD/ u

IYUD |= UY1

IZUD i

ux 2

UY2

Uz 2

Because the transformation matrix

have upon inverting Eq. (8)

UX3

Uy 3

UZ3

is orthogonal,

(8)-D

-ZD

T M-(M =M ), we

iXD ' UxlI

i\YD = UX3
-!ZD UX 3

UYl

UY2

Uy3

UZi -(X-UD

Uz2 ' ; YUD

u z 3 -ZUD

(9)

At this point it should be recalled that there exists only two physical

vectors, albeit expressed in two frames of reference. Accordingly,

if in Eq. (9) the set of unit vectors

4.-3
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is replaced by

we end up with

-D = ( UU
iYD = x2 Uy2 ' Uz

2
UyU (10)

-ZD UX3 uy 3 Uz 3 -iZU

Thus we have succeeded in expressing the desired stable member

in terms of the present. This is so because ixu, iyU, andizu are expressed

in terms of lS and i2S, each of which in turn is expressed in terms of

-XS' iyS' and 1ZS

Explicitly, the unit vectors of the desired stable member are expressed

in terms of those of the present stable member as follows;

iXD =XD1 -s + XD2 -_yS + xD 3 izs la)

2-D = YD iXS + YD2 -YS + YD3 -ZS (lib)

!zD = ZD1 -XS + ZD2 -YS + ZD3 ZS (llc

The oxact eNpressions for XDl, XD2 , etc. are obtained by expressing

iXU' -iyu and iZU in terms of ixs iYS' andiZS in Eq. 10.

In the computations of the torquing angles, the coefficients xD1,
XD2 . etc. are used as inputs.

4.4
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4. 4 Calculation of Gyro Torquing Angles

Having expressed the desired stable member in terms of the present

stable member, three rotations that bring the two into coincidence are

readily defined. The definition of these angles is the same as that given

in Ref. 2.

A rotation of 8y is first performed about the present y axis (iYS )

yieldingix -iYS' and 
Z

. Then a rotation of 8 z is performed about

i Z yieldingiXD, _y, andiZ
. Thirdly, a rotation of Ox about iXD

results inD iD' andizD.

The unit vector iz, obtained after the first rotation, is given by

i Z - (Z1 , 0, z 3 ) (12a)

2 0 (12 )

_ _ -D3 XD1 .

Dl° XD3 D1 XD3 (12b)

Expressed in terms of i
Z

and the projection of the present stable
member onto the desired stable member, the rotation angles are given by:

sin Py =Z1 (13a)

ycos 8y z3

sin 8 = XD2 (14a)

cos 8 z 3 XD1- Z
1

XD3 (14b)

sin = iz. iyD = Z
1

YD1 + Z3 YD3 (15a)

cos 8 x =iZ _ D ZDl + 3 ZD3 (15b)

-4. 5



5. DETAILED FLOW DIAGRAM

This section contains detailed flow

used in the calculation of gyro torquing

UNIVERSAL CONSTANTS

i =r i y i + r i
-jR rlX -XR + l -R Z+ -lZZR

-2R = r2X -XR + r2Y iYR + r2Z iZR
_ I

diagrams of the sequential equations

angles by the fine alignment routine.

INPUT VARIABLES

Figure 2a. Fine Alignment Gyro Torquing Angles

5.1

i =s
-ilS SX -XS + Sly -S + S1z iZS

-2S S2X-iXS 2Y y + s2Z -ZS

MR- DS

Express star unit vectors in terms of

desired stable member coordinates

-LhDS = dlX XD + dy !yD + dlZiZD

ji2DS d2X iXD + d2Y-YD + d 2 Z iZD

dlX lX

ly MRDS r

\dlz \rlz

d) MR-DS 2Y
d2Z/ \r2Z

1



Express desired stable member coordinates in terms of present

stable member coordinates.

-XU = 14S

_IYU = unit (4S xi2S )

:ZU = XU X iYU

-XUD -- DS

-iYUD = unit (!iDS x i2DS )

!ZUD -XUD x -iYUD

-XD = iXUD, 1 iXU + -YUD, 1 -YU + -ZUD, 1 iZU

=XD1 XS + XD2 iYS + XD3 IZS

iYD = !xuD, 2 -XU + iYUD, 2 -YU + !ZUD, 2 -ZU

YD1 iXS + YD2 -YS + YD3 -ZS

-ZD = iXUD, 3 -XU + -YUD, 3 iYU + -iZUD,. 3 iZU

ZD iXS + ZD2 iyS + ZD3 -iZS

Figure 2b. Fine Alignment Gyro Torquing Angles
5.2



EXIT

Figure 2c. Fine Alignment Gyro Torquing Angles
5. 3



6. SUPPLEMENTARY INFORMATION

The equations derived in this document define three rotations which are

sufficient to bring the present stable member into coincidence with thede-

sired stable member. Because of the arbitrariness in defining the order

of successive rotations and the axes of rotation (i. e., with respect to the

present stable member or the desired stable member), care must be

exercised in calling the derived angles "gyro torquing angles". It is

conceivable that different manufacturers might employ different definitions

for "gyro torquing angles".

In that a specific IRU has not been selected for Shuttle use, no final

statement can presently be made as regards "gyro torquing angles" for

fine alignment unless there are to be no other routines that might possibly

operate under a conflicting definition.

In this document (as in Ref. 2) the rotations were executed in the

sequence Y, Z, X. Should for any reason a different sequence be desired

(e. g., X, Y, Z), the derived equations are correct provided a proper

transformation of variables takes place (i. e., Y --- X, Z -M--Y,

X -*-Z).

6.1
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